A characterization of singular graphs
The electronic journal of linear algebra, Tome 16 (2007), pp. 451-462.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Characterization of singular graphs can be reduced to the non-trivial solutions of a system of linear homogeneous equations ${\bold {Ax=0}}$ for the 0-1 adjacency matrix ${\bold A}$. A graph $G$ is singular of nullity $\eta(G)$ greater than or equal to 1, if the dimension of the nullspace ${ker}({\bold A})$ of its adjacency matrix $A$ is $\eta(G)$. Necessary and sufficient conditions are determined for a graph to be singular in terms of admissible induced subgraphs.
Classification : 05C50, 05C60, 05B20
Keywords: adjacency matrix, eigenvalues, singular graphs, core, periphery, singular configuration, minimal configuration
@article{ELA_2007__16__a0,
     author = {Sciriha, Irene},
     title = {A characterization of singular graphs},
     journal = {The electronic journal of linear algebra},
     pages = {451--462},
     publisher = {mathdoc},
     volume = {16},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2007__16__a0/}
}
TY  - JOUR
AU  - Sciriha, Irene
TI  - A characterization of singular graphs
JO  - The electronic journal of linear algebra
PY  - 2007
SP  - 451
EP  - 462
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2007__16__a0/
LA  - en
ID  - ELA_2007__16__a0
ER  - 
%0 Journal Article
%A Sciriha, Irene
%T A characterization of singular graphs
%J The electronic journal of linear algebra
%D 2007
%P 451-462
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2007__16__a0/
%G en
%F ELA_2007__16__a0
Sciriha, Irene. A characterization of singular graphs. The electronic journal of linear algebra, Tome 16 (2007), pp. 451-462. http://geodesic.mathdoc.fr/item/ELA_2007__16__a0/