An eigenvalue inequality and spectrum localization for complex matrices
The electronic journal of linear algebra, Tome 15 (2006), pp. 239-250.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Using the notions of the numerical range, Schur complement and unitary equivalence, an eigenvalue inequality is obtained for a general complex matrix, giving rise to a region in the complex plane that contains its spectrum. This region is determined by a curve, generalizing and improving classical eigenvalue bounds obtained by the Hermitian and skew-Hermitian parts, as well as the numerical range of a matrix.
Classification : 15A18, 15A60
Keywords: eigenvalues, inclusion regions, numerical range, Hermitian part
@article{ELA_2006__15__a9,
     author = {Adam, Maria and Tsatsomeros, Michael J.},
     title = {An eigenvalue inequality and spectrum localization for complex matrices},
     journal = {The electronic journal of linear algebra},
     pages = {239--250},
     publisher = {mathdoc},
     volume = {15},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2006__15__a9/}
}
TY  - JOUR
AU  - Adam, Maria
AU  - Tsatsomeros, Michael J.
TI  - An eigenvalue inequality and spectrum localization for complex matrices
JO  - The electronic journal of linear algebra
PY  - 2006
SP  - 239
EP  - 250
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2006__15__a9/
LA  - en
ID  - ELA_2006__15__a9
ER  - 
%0 Journal Article
%A Adam, Maria
%A Tsatsomeros, Michael J.
%T An eigenvalue inequality and spectrum localization for complex matrices
%J The electronic journal of linear algebra
%D 2006
%P 239-250
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2006__15__a9/
%G en
%F ELA_2006__15__a9
Adam, Maria; Tsatsomeros, Michael J. An eigenvalue inequality and spectrum localization for complex matrices. The electronic journal of linear algebra, Tome 15 (2006), pp. 239-250. http://geodesic.mathdoc.fr/item/ELA_2006__15__a9/