Irreducible Toeplitz and Hankel matrices
The electronic journal of linear algebra, Tome 15 (2006), pp. 274-284.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: An infinite matrix is called irreducible if its directed graph is strongly connected. It is proved that an infinite Toeplitz matrix is irreducible if and only if almost every finite leading submatrix is irreducible. An infinite Hankel matrix may be irreducible even if all its finite leading submatrices are reducible. Irreducibility results are also obtained in the finite cases.
Classification : 05C50, 05C40, 11A05, 11D04, 15A48, 47B35
Keywords: infinite Toeplitz, Hankel matrices, finite leading submatrices, irreducibility, strongly connected digraphs
@article{ELA_2006__15__a5,
     author = {F\"orster, K.-H. and Nagy, B.},
     title = {Irreducible {Toeplitz} and {Hankel} matrices},
     journal = {The electronic journal of linear algebra},
     pages = {274--284},
     publisher = {mathdoc},
     volume = {15},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2006__15__a5/}
}
TY  - JOUR
AU  - Förster, K.-H.
AU  - Nagy, B.
TI  - Irreducible Toeplitz and Hankel matrices
JO  - The electronic journal of linear algebra
PY  - 2006
SP  - 274
EP  - 284
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2006__15__a5/
LA  - en
ID  - ELA_2006__15__a5
ER  - 
%0 Journal Article
%A Förster, K.-H.
%A Nagy, B.
%T Irreducible Toeplitz and Hankel matrices
%J The electronic journal of linear algebra
%D 2006
%P 274-284
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2006__15__a5/
%G en
%F ELA_2006__15__a5
Förster, K.-H.; Nagy, B. Irreducible Toeplitz and Hankel matrices. The electronic journal of linear algebra, Tome 15 (2006), pp. 274-284. http://geodesic.mathdoc.fr/item/ELA_2006__15__a5/