Essentially Hermitian matrices revisited
The electronic journal of linear algebra, Tome 15 (2006), pp. 285-296.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The following case of the Determinantal Conjecture of Marcus and de Oliveira is established. Let A and C be hermitian n * n matrices with prescribed eigenvalues a1, . . . , an and c1, . . . , cn, respectively. Let ^ be a non-real unimodular complex number, B = ^C, bj = ^cj for j = 1, . . . , n. Then $det(A - B) 2$ co 8! : nY j=1 (aj - $boe(j))$; oe 2 Sn 9= ; , where Sn denotes the group of all permutations of ${1, . . . , n}$ and co the convex hull taken in the complex plane.
@article{ELA_2006__15__a4,
     author = {Drury, S.W.},
     title = {Essentially {Hermitian} matrices revisited},
     journal = {The electronic journal of linear algebra},
     pages = {285--296},
     publisher = {mathdoc},
     volume = {15},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2006__15__a4/}
}
TY  - JOUR
AU  - Drury, S.W.
TI  - Essentially Hermitian matrices revisited
JO  - The electronic journal of linear algebra
PY  - 2006
SP  - 285
EP  - 296
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2006__15__a4/
LA  - en
ID  - ELA_2006__15__a4
ER  - 
%0 Journal Article
%A Drury, S.W.
%T Essentially Hermitian matrices revisited
%J The electronic journal of linear algebra
%D 2006
%P 285-296
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2006__15__a4/
%G en
%F ELA_2006__15__a4
Drury, S.W. Essentially Hermitian matrices revisited. The electronic journal of linear algebra, Tome 15 (2006), pp. 285-296. http://geodesic.mathdoc.fr/item/ELA_2006__15__a4/