A note on Newton and Newton-like inequalities for $M$-matrices and for Drazin inverses of $M$-matrices
The electronic journal of linear algebra, Tome 15 (2006), pp. 314-328.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In a recent paper Holtz showed that M-matrices satisfy Newton's inequalities and so do the inverses of nonsingular M-matrices. Since nonsingular M-matrices and their inverses display various types of monotonic behavior, monotonicity properties adapted for Newton's inequalities are examined for nonsingular M-matrices and their inverses.
Classification : 15A09, 15A24, 15A42
Keywords: M-matrices, nonnegative matrices, generalized inverses, Newton's inequalities
@article{ELA_2006__15__a2,
     author = {Neumann, Michael and Xu, Jianhong},
     title = {A note on {Newton} and {Newton-like} inequalities for $M$-matrices and for {Drazin} inverses of $M$-matrices},
     journal = {The electronic journal of linear algebra},
     pages = {314--328},
     publisher = {mathdoc},
     volume = {15},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2006__15__a2/}
}
TY  - JOUR
AU  - Neumann, Michael
AU  - Xu, Jianhong
TI  - A note on Newton and Newton-like inequalities for $M$-matrices and for Drazin inverses of $M$-matrices
JO  - The electronic journal of linear algebra
PY  - 2006
SP  - 314
EP  - 328
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2006__15__a2/
LA  - en
ID  - ELA_2006__15__a2
ER  - 
%0 Journal Article
%A Neumann, Michael
%A Xu, Jianhong
%T A note on Newton and Newton-like inequalities for $M$-matrices and for Drazin inverses of $M$-matrices
%J The electronic journal of linear algebra
%D 2006
%P 314-328
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2006__15__a2/
%G en
%F ELA_2006__15__a2
Neumann, Michael; Xu, Jianhong. A note on Newton and Newton-like inequalities for $M$-matrices and for Drazin inverses of $M$-matrices. The electronic journal of linear algebra, Tome 15 (2006), pp. 314-328. http://geodesic.mathdoc.fr/item/ELA_2006__15__a2/