On minimal rank over finite fields
The electronic journal of linear algebra, Tome 15 (2006), pp. 210-214.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let F be a field. Given a simple graph G on n vertices, its minimal rank (with respect to F ) is the minimum rank of a symmetric n * n F -valued matrix whose off-diagonal zeroes are the same as in the adjacency matrix of G. If F is finite, then for every k, it is shown that the set of graphs of minimal rank at most k is characterized by finitely many forbidden induced subgraphs, each on at most ( |F| k 2 + 1)2 vertices. These findings also hold in a more general context.
Classification : 05C50, 05C75, 15A03, 15A33
Keywords: minimal rank, forbidden induced subgraph, critical graph
@article{ELA_2006__15__a12,
     author = {Ding, Guoli and Kotlov, Andre\u{i}},
     title = {On minimal rank over finite fields},
     journal = {The electronic journal of linear algebra},
     pages = {210--214},
     publisher = {mathdoc},
     volume = {15},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2006__15__a12/}
}
TY  - JOUR
AU  - Ding, Guoli
AU  - Kotlov, Andreĭ
TI  - On minimal rank over finite fields
JO  - The electronic journal of linear algebra
PY  - 2006
SP  - 210
EP  - 214
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2006__15__a12/
LA  - en
ID  - ELA_2006__15__a12
ER  - 
%0 Journal Article
%A Ding, Guoli
%A Kotlov, Andreĭ
%T On minimal rank over finite fields
%J The electronic journal of linear algebra
%D 2006
%P 210-214
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2006__15__a12/
%G en
%F ELA_2006__15__a12
Ding, Guoli; Kotlov, Andreĭ. On minimal rank over finite fields. The electronic journal of linear algebra, Tome 15 (2006), pp. 210-214. http://geodesic.mathdoc.fr/item/ELA_2006__15__a12/