Linear combinations of graph eigenvalues
The electronic journal of linear algebra, Tome 15 (2006), pp. 329-336.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\mu_1(G)\ge\dots\ge \mu_n(G)$ be the eigenvalues of the adjacency matrix of a graph $G$ of order $n$, and $\overline{G}$ be the complement of $G$. Suppose $F(G)$ is a fixed linear combination of $\mu_i(G)$, $\mu_{n-i+1}(G)$, $\mu_i(\overline{G})$, and $\mu_{n-i+1}(\overline{G})$, $1\le i\le k$. It is shown that the limit $$\lim_{n\to\infty} \tfrac1n\max \{F(G): v(G)=n\}$$ always exists. Moreover, the statement remains true if the maximum is taken over some restricted families like "$K_r$-free" or "$r$-partite" graphs. It is also shown that $$\frac{29+\sqrt{329}}{42} n-25\le \max_{v(G)=n} \mu_1(G)+ \mu_2(G)\le \frac{2}{\sqrt{3}}n.$$ This inequality answers in the negative a question of Gernert.
Classification : 15A42, 05C50
Keywords: extremal graph eigenvalues, linear combination of eigenvalues, multiplicative property
@article{ELA_2006__15__a1,
     author = {Nikiforov, Vladimir},
     title = {Linear combinations of graph eigenvalues},
     journal = {The electronic journal of linear algebra},
     pages = {329--336},
     publisher = {mathdoc},
     volume = {15},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2006__15__a1/}
}
TY  - JOUR
AU  - Nikiforov, Vladimir
TI  - Linear combinations of graph eigenvalues
JO  - The electronic journal of linear algebra
PY  - 2006
SP  - 329
EP  - 336
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2006__15__a1/
LA  - en
ID  - ELA_2006__15__a1
ER  - 
%0 Journal Article
%A Nikiforov, Vladimir
%T Linear combinations of graph eigenvalues
%J The electronic journal of linear algebra
%D 2006
%P 329-336
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2006__15__a1/
%G en
%F ELA_2006__15__a1
Nikiforov, Vladimir. Linear combinations of graph eigenvalues. The electronic journal of linear algebra, Tome 15 (2006), pp. 329-336. http://geodesic.mathdoc.fr/item/ELA_2006__15__a1/