Spectral properties of sign symmetric matrices
The electronic journal of linear algebra, Tome 13 (2005), pp. 90-110.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Spectral properties of sign symmetric matrices are studied. A criterion for sign symmetry of shifted basic circulant permutation matrices is proven, and is then used to answer the question which complex numbers can serve as eigenvalues of sign symmetric $3\times 3$ matrices. The results are applied in the discussion of the eigenvalues of $QM$-matrices. In particular, it is shown that for every positive integer n there exists a $QM$-matrix $A$ such that $A^k$ is a sign symmetric $P$-matrix for all $k$, but not all the eigenvalues of $A$ are positive real numbers.
Classification : 15A18, 15A29
Keywords: spectrum, sign symmetric matrices, circulant matrices, basic circulant permutation matrices, P -matrices, P M-matrices, Q-matrices, QM-matrices
@article{ELA_2005__13__a19,
     author = {Hershkowitz, Daniel and Keller, Nathan},
     title = {Spectral properties of sign symmetric matrices},
     journal = {The electronic journal of linear algebra},
     pages = {90--110},
     publisher = {mathdoc},
     volume = {13},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2005__13__a19/}
}
TY  - JOUR
AU  - Hershkowitz, Daniel
AU  - Keller, Nathan
TI  - Spectral properties of sign symmetric matrices
JO  - The electronic journal of linear algebra
PY  - 2005
SP  - 90
EP  - 110
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2005__13__a19/
LA  - en
ID  - ELA_2005__13__a19
ER  - 
%0 Journal Article
%A Hershkowitz, Daniel
%A Keller, Nathan
%T Spectral properties of sign symmetric matrices
%J The electronic journal of linear algebra
%D 2005
%P 90-110
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2005__13__a19/
%G en
%F ELA_2005__13__a19
Hershkowitz, Daniel; Keller, Nathan. Spectral properties of sign symmetric matrices. The electronic journal of linear algebra, Tome 13 (2005), pp. 90-110. http://geodesic.mathdoc.fr/item/ELA_2005__13__a19/