An invariant of $2\times 2$ matrices
The electronic journal of linear algebra, Tome 13 (2005), pp. 146-152.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let W be the space of 2*2 matrices over a field K. Let f be any linear function on W that kills scalar matrices. Let A 2 W and define $fk(A) = f(Ak)$. Then the quantity fk+$1(A)/f(A)$ is invariant under conjugation and moreover fk+$1(A)/f(A) = trace$ SkA, where SkA is the k-th symmetric power of A, that is, the matrix giving the action of A on homogeneous polynomials of degree k.
Classification : 15A72, 15A69
Keywords: matrix invariants, power of a matrix, trace, symmetric power of a matrix
@article{ELA_2005__13__a15,
     author = {Cisneros-Molina, Jos\'e Luis},
     title = {An invariant of $2\times 2$ matrices},
     journal = {The electronic journal of linear algebra},
     pages = {146--152},
     publisher = {mathdoc},
     volume = {13},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2005__13__a15/}
}
TY  - JOUR
AU  - Cisneros-Molina, José Luis
TI  - An invariant of $2\times 2$ matrices
JO  - The electronic journal of linear algebra
PY  - 2005
SP  - 146
EP  - 152
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2005__13__a15/
LA  - en
ID  - ELA_2005__13__a15
ER  - 
%0 Journal Article
%A Cisneros-Molina, José Luis
%T An invariant of $2\times 2$ matrices
%J The electronic journal of linear algebra
%D 2005
%P 146-152
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2005__13__a15/
%G en
%F ELA_2005__13__a15
Cisneros-Molina, José Luis. An invariant of $2\times 2$ matrices. The electronic journal of linear algebra, Tome 13 (2005), pp. 146-152. http://geodesic.mathdoc.fr/item/ELA_2005__13__a15/