On a conjecture regarding characteristic polynomial of a matrix pair
The electronic journal of linear algebra, Tome 13 (2005), pp. 157-161.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For $n$-by-$n$ Hermitian matrices $A\,(>0)$ and $B$, define $$ \eta(A,B)=\sum_S\det A(S)\det B(S'), $$ where the summation is over all subsets of $\{1,\dots,n\}, S'$ is the complement of $S$, and by convention $\det A(\emptyset)=1$. Bapat proved for $n=3$ that the zeros of $\eta(\lambda A,-B)$ and the zeros of $\eta(\lambda A(23),-B(23))$ interlace. This result is generalized to a broader class of matrices.
Classification : 15A15, 15A42
Keywords: symmetric matrices, cycles, characteristic polynomial, interlacing
@article{ELA_2005__13__a13,
     author = {da Fonseca, C.M.},
     title = {On a conjecture regarding characteristic polynomial of a matrix pair},
     journal = {The electronic journal of linear algebra},
     pages = {157--161},
     publisher = {mathdoc},
     volume = {13},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2005__13__a13/}
}
TY  - JOUR
AU  - da Fonseca, C.M.
TI  - On a conjecture regarding characteristic polynomial of a matrix pair
JO  - The electronic journal of linear algebra
PY  - 2005
SP  - 157
EP  - 161
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2005__13__a13/
LA  - en
ID  - ELA_2005__13__a13
ER  - 
%0 Journal Article
%A da Fonseca, C.M.
%T On a conjecture regarding characteristic polynomial of a matrix pair
%J The electronic journal of linear algebra
%D 2005
%P 157-161
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2005__13__a13/
%G en
%F ELA_2005__13__a13
da Fonseca, C.M. On a conjecture regarding characteristic polynomial of a matrix pair. The electronic journal of linear algebra, Tome 13 (2005), pp. 157-161. http://geodesic.mathdoc.fr/item/ELA_2005__13__a13/