A variant on the graph parameters of Colin de Verdière: implications to the minimum rank of graphs
The electronic journal of linear algebra, Tome 13 (2005), pp. 387-404.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For a given undirected graph G, the minimum rank of G is defined to be the smallest possible rank over all real symmetric matrices A whose (i, j)th entry is nonzero whenever i 6= j $and{ i, j}$ is an edge in G. Building upon recent work involving maximal coranks (or nullities) of certain symmetric matrices associated with a graph, a new parameter z. is introduced that is based on the corank of a different but related class of symmetric matrices. For this new parameter some properties analogous to the ones possessed by the existing parameters are verified. In addition, an attempt is made to apply these properties associated with z. to learn more about the minimum rank of graphs - the original motivation.
Classification : 15A18, 05C50
Keywords: graphs, minimum rank, graph minor, corank, strong arnold property, symmetric matrices
@article{ELA_2005__13__a1,
     author = {Barioli, Francesco and Fallat, Shaun and Hogben, Leslie},
     title = {A variant on the graph parameters of {Colin} de {Verdi\`ere:} implications to the minimum rank of graphs},
     journal = {The electronic journal of linear algebra},
     pages = {387--404},
     publisher = {mathdoc},
     volume = {13},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2005__13__a1/}
}
TY  - JOUR
AU  - Barioli, Francesco
AU  - Fallat, Shaun
AU  - Hogben, Leslie
TI  - A variant on the graph parameters of Colin de Verdière: implications to the minimum rank of graphs
JO  - The electronic journal of linear algebra
PY  - 2005
SP  - 387
EP  - 404
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2005__13__a1/
LA  - en
ID  - ELA_2005__13__a1
ER  - 
%0 Journal Article
%A Barioli, Francesco
%A Fallat, Shaun
%A Hogben, Leslie
%T A variant on the graph parameters of Colin de Verdière: implications to the minimum rank of graphs
%J The electronic journal of linear algebra
%D 2005
%P 387-404
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2005__13__a1/
%G en
%F ELA_2005__13__a1
Barioli, Francesco; Fallat, Shaun; Hogben, Leslie. A variant on the graph parameters of Colin de Verdière: implications to the minimum rank of graphs. The electronic journal of linear algebra, Tome 13 (2005), pp. 387-404. http://geodesic.mathdoc.fr/item/ELA_2005__13__a1/