Determinant preserving transformations on symmetric matrix spaces
The electronic journal of linear algebra, Tome 11 (2004), pp. 205-211.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $Sn(F)$ be the vector space of n * n symmetric matrices over a field F (with certain restrictions on cardinality and characteristic). The transformations A' on the space which satisfy one of the following conditions: 1. $det(A + y"B) = $det(A'$(A) + y$"A'$(B))$ for all A, B $2 Sn(F)$ and y" 2 F; 2. A' is surjective and $det(A + y"B) = $det(A'$(A) + y$"A'$(B))$ for all A, B and two specific y"; 3. A' is additive and preserves determinant are characterized.
Classification : 15A03, 15A04
Keywords: linear preserving problem, rank, symmetric matrix, determinant
@article{ELA_2004__11__a5,
     author = {Cao, Chongguang and Tang, Xiaomin},
     title = {Determinant preserving transformations on symmetric matrix spaces},
     journal = {The electronic journal of linear algebra},
     pages = {205--211},
     publisher = {mathdoc},
     volume = {11},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2004__11__a5/}
}
TY  - JOUR
AU  - Cao, Chongguang
AU  - Tang, Xiaomin
TI  - Determinant preserving transformations on symmetric matrix spaces
JO  - The electronic journal of linear algebra
PY  - 2004
SP  - 205
EP  - 211
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2004__11__a5/
LA  - en
ID  - ELA_2004__11__a5
ER  - 
%0 Journal Article
%A Cao, Chongguang
%A Tang, Xiaomin
%T Determinant preserving transformations on symmetric matrix spaces
%J The electronic journal of linear algebra
%D 2004
%P 205-211
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2004__11__a5/
%G en
%F ELA_2004__11__a5
Cao, Chongguang; Tang, Xiaomin. Determinant preserving transformations on symmetric matrix spaces. The electronic journal of linear algebra, Tome 11 (2004), pp. 205-211. http://geodesic.mathdoc.fr/item/ELA_2004__11__a5/