On Cayley's formula for counting trees in nested interval graphs
The electronic journal of linear algebra, Tome 11 (2004), pp. 241-245.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper it is shown that the spectrum of a nested interval graph has a very simple structure. From this result a formula is derived to the number of spanning trees in a nested interval graph; this is a generalization of the Cayley formula.
Classification : 15A15, 15F10
Keywords: spectrum, interval graph, number of spanning trees, Cayley formula
@article{ELA_2004__11__a3,
     author = {Coppersmith, Don and Lotker, Zvi},
     title = {On {Cayley's} formula for counting trees in nested interval graphs},
     journal = {The electronic journal of linear algebra},
     pages = {241--245},
     publisher = {mathdoc},
     volume = {11},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2004__11__a3/}
}
TY  - JOUR
AU  - Coppersmith, Don
AU  - Lotker, Zvi
TI  - On Cayley's formula for counting trees in nested interval graphs
JO  - The electronic journal of linear algebra
PY  - 2004
SP  - 241
EP  - 245
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2004__11__a3/
LA  - en
ID  - ELA_2004__11__a3
ER  - 
%0 Journal Article
%A Coppersmith, Don
%A Lotker, Zvi
%T On Cayley's formula for counting trees in nested interval graphs
%J The electronic journal of linear algebra
%D 2004
%P 241-245
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2004__11__a3/
%G en
%F ELA_2004__11__a3
Coppersmith, Don; Lotker, Zvi. On Cayley's formula for counting trees in nested interval graphs. The electronic journal of linear algebra, Tome 11 (2004), pp. 241-245. http://geodesic.mathdoc.fr/item/ELA_2004__11__a3/