Eigenvalue multiplicities of products of companion matrices
The electronic journal of linear algebra, Tome 11 (2004), pp. 103-114.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is shown that under suitable conditions an eigenvalue of a product of companion matrices has geometric multiplicity equal to one. The result is used to show that for a class of Random Walks in Periodic Environments recurrence is equivalent to a product of companion matrices having 1 as an eigenvalue of algebraic multiplicity greater than one.
Classification : 15A18, 15A21, 60J10
Keywords: matrix products, eigenvalue multiplicities, companion matrices, random walk in a periodic environment
@article{ELA_2004__11__a12,
     author = {Key, Eric S. and Volkmer, Hans},
     title = {Eigenvalue multiplicities of products of companion matrices},
     journal = {The electronic journal of linear algebra},
     pages = {103--114},
     publisher = {mathdoc},
     volume = {11},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2004__11__a12/}
}
TY  - JOUR
AU  - Key, Eric S.
AU  - Volkmer, Hans
TI  - Eigenvalue multiplicities of products of companion matrices
JO  - The electronic journal of linear algebra
PY  - 2004
SP  - 103
EP  - 114
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2004__11__a12/
LA  - en
ID  - ELA_2004__11__a12
ER  - 
%0 Journal Article
%A Key, Eric S.
%A Volkmer, Hans
%T Eigenvalue multiplicities of products of companion matrices
%J The electronic journal of linear algebra
%D 2004
%P 103-114
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2004__11__a12/
%G en
%F ELA_2004__11__a12
Key, Eric S.; Volkmer, Hans. Eigenvalue multiplicities of products of companion matrices. The electronic journal of linear algebra, Tome 11 (2004), pp. 103-114. http://geodesic.mathdoc.fr/item/ELA_2004__11__a12/