Positive entries of stable matrices
The electronic journal of linear algebra, Tome 12 (2004-2005).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The question of how many elements of a real positive stable matrix must be positive is investigated. It is shown that any real stable matrix of order greater than 1 has at least two positive entries. Furthermore, for every stable spectrum of cardinality greater than 1 there exists a real matrix with that spectrum with exactly two positive elements, where all other elements of the matrix can be chosen to be negative.
Classification : 15A18, 15A29
Keywords: stable matrix, companion matrix, positive elementary symmetric functions
@article{ELA_2004-2005__12__a4,
     author = {Friedland, Shmuel and Hershkowitz, Daniel and Rump, Siegfried M.},
     title = {Positive entries of stable matrices},
     journal = {The electronic journal of linear algebra},
     publisher = {mathdoc},
     volume = {12},
     year = {2004-2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2004-2005__12__a4/}
}
TY  - JOUR
AU  - Friedland, Shmuel
AU  - Hershkowitz, Daniel
AU  - Rump, Siegfried M.
TI  - Positive entries of stable matrices
JO  - The electronic journal of linear algebra
PY  - 2004-2005
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2004-2005__12__a4/
LA  - en
ID  - ELA_2004-2005__12__a4
ER  - 
%0 Journal Article
%A Friedland, Shmuel
%A Hershkowitz, Daniel
%A Rump, Siegfried M.
%T Positive entries of stable matrices
%J The electronic journal of linear algebra
%D 2004-2005
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2004-2005__12__a4/
%G en
%F ELA_2004-2005__12__a4
Friedland, Shmuel; Hershkowitz, Daniel; Rump, Siegfried M. Positive entries of stable matrices. The electronic journal of linear algebra, Tome 12 (2004-2005). http://geodesic.mathdoc.fr/item/ELA_2004-2005__12__a4/