The maximum number of $2\times 2$ odd submatrices in $(0,1)$-matrices
The electronic journal of linear algebra, Tome 10 (2003), pp. 223-231.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let A be an m * n, (0, 1)-matrix. A submatrix of A is odd if the sum of its entries is an odd integer and even otherwise. The maximum number of 2*2 odd submatrices in a (0, 1)-matrix is related to the existence of Hadamard matrices and bounds on Tur'an numbers. Pinelis [On the minimal number of even submatrices of 0-1 matrices, Designs, Codes and Cryptography, 9:85-93, 1994] exhibits an asymptotic formula for the minimum possible number of p * q even submatrices of an m * n (0, 1)-matrix. Assuming the Hadamard conjecture, specific techniques are provided on how to assign the 0's and 1's, in order to yield the maximum number of 2 * 2 odd submatrices in an m * n (0, 1)-matrix. Moreover, formulas are determined that yield the exact maximum counts with one exception, in which case upper and lower bounds are given. These results extend and refine those of Pinelis.
Classification : 15A36, 15A37
Keywords: (0, 1)-matrices, even and odd matrices, Hadamard matrices
@article{ELA_2003__10__a7,
     author = {Marks, Michael and Norwood, Rick and Poole, George},
     title = {The maximum number of $2\times 2$ odd submatrices in $(0,1)$-matrices},
     journal = {The electronic journal of linear algebra},
     pages = {223--231},
     publisher = {mathdoc},
     volume = {10},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2003__10__a7/}
}
TY  - JOUR
AU  - Marks, Michael
AU  - Norwood, Rick
AU  - Poole, George
TI  - The maximum number of $2\times 2$ odd submatrices in $(0,1)$-matrices
JO  - The electronic journal of linear algebra
PY  - 2003
SP  - 223
EP  - 231
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2003__10__a7/
LA  - en
ID  - ELA_2003__10__a7
ER  - 
%0 Journal Article
%A Marks, Michael
%A Norwood, Rick
%A Poole, George
%T The maximum number of $2\times 2$ odd submatrices in $(0,1)$-matrices
%J The electronic journal of linear algebra
%D 2003
%P 223-231
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2003__10__a7/
%G en
%F ELA_2003__10__a7
Marks, Michael; Norwood, Rick; Poole, George. The maximum number of $2\times 2$ odd submatrices in $(0,1)$-matrices. The electronic journal of linear algebra, Tome 10 (2003), pp. 223-231. http://geodesic.mathdoc.fr/item/ELA_2003__10__a7/