Properties of a covariance matrix with an application to $D$-optimal design
The electronic journal of linear algebra, Tome 10 (2003), pp. 65-76.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A covariance matrix of circulant correlation, $R$, is studied. A pattern of entries in $R^{-1}$ independent of the value $\rho$ of the correlation coefficient is proved based on a recursive relation among the entries of $R^{-1}$. The D-optimal design for simple linear regression with circulantly correlated observations on $[a,b]$ $(a$ is obtained if even observations are taken and the correlation coefficient is between 0 and 0.5.
Classification : 62K05, 15A29
Keywords: D-optimality, covariance matrix, circulant correlation
@article{ELA_2003__10__a19,
     author = {Zhu, Zewen and Coster, Daniel C. and Beasley, Leroy B.},
     title = {Properties of a covariance matrix with an application to $D$-optimal design},
     journal = {The electronic journal of linear algebra},
     pages = {65--76},
     publisher = {mathdoc},
     volume = {10},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2003__10__a19/}
}
TY  - JOUR
AU  - Zhu, Zewen
AU  - Coster, Daniel C.
AU  - Beasley, Leroy B.
TI  - Properties of a covariance matrix with an application to $D$-optimal design
JO  - The electronic journal of linear algebra
PY  - 2003
SP  - 65
EP  - 76
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2003__10__a19/
LA  - en
ID  - ELA_2003__10__a19
ER  - 
%0 Journal Article
%A Zhu, Zewen
%A Coster, Daniel C.
%A Beasley, Leroy B.
%T Properties of a covariance matrix with an application to $D$-optimal design
%J The electronic journal of linear algebra
%D 2003
%P 65-76
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2003__10__a19/
%G en
%F ELA_2003__10__a19
Zhu, Zewen; Coster, Daniel C.; Beasley, Leroy B. Properties of a covariance matrix with an application to $D$-optimal design. The electronic journal of linear algebra, Tome 10 (2003), pp. 65-76. http://geodesic.mathdoc.fr/item/ELA_2003__10__a19/