Recognition of hidden positive row diagonally dominant matrices
The electronic journal of linear algebra, Tome 10 (2003), pp. 102-105.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A hidden positive row diagonally dominant (hprdd) matrix is a square matrix A for which there exist square matrices C and B so that AC = B and each diagonal entry of B and C is greater than the sum of the absolute values of the off-diagonal entries in its row. A linear program with 5n2 - 4n variables and 2n2 constraints is defined that takes as input an n * n matrix A and produces C and B satisfying the above conditions if and only if they exist. A 4*4 symmetric positive definite matrix that is not an hprdd matrix is presented.
Classification : 15A23, 15A39, 15A48
Keywords: factorization of matrices, linear inequalities, P-matrices
@article{ELA_2003__10__a16,
     author = {Morris, Walter D. jun.},
     title = {Recognition of hidden positive row diagonally dominant matrices},
     journal = {The electronic journal of linear algebra},
     pages = {102--105},
     publisher = {mathdoc},
     volume = {10},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2003__10__a16/}
}
TY  - JOUR
AU  - Morris, Walter D. jun.
TI  - Recognition of hidden positive row diagonally dominant matrices
JO  - The electronic journal of linear algebra
PY  - 2003
SP  - 102
EP  - 105
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2003__10__a16/
LA  - en
ID  - ELA_2003__10__a16
ER  - 
%0 Journal Article
%A Morris, Walter D. jun.
%T Recognition of hidden positive row diagonally dominant matrices
%J The electronic journal of linear algebra
%D 2003
%P 102-105
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2003__10__a16/
%G en
%F ELA_2003__10__a16
Morris, Walter D. jun. Recognition of hidden positive row diagonally dominant matrices. The electronic journal of linear algebra, Tome 10 (2003), pp. 102-105. http://geodesic.mathdoc.fr/item/ELA_2003__10__a16/