A generalization of Moore-Penrose biorthogonal systems
The electronic journal of linear algebra, Tome 10 (2003), pp. 146-154.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, the notion of Moore-Penrose biorthogonal systems is generalized. In [Fiedler, Moore-Penrose biorthogonal systems in Euclidean spaces, Lin. Alg. Appl. 362 (2003), pp. 137-143], transformations of generating systems of Euclidean spaces are examined in connection with the Moore-Penrose inverses of their Gram matrices. In this paper, g-inverses are used instead of the Moore-Penrose inverses and, in particular, the details of transformations derived from reflexive ginverses are studied. Furthermore, the characterization theorem of Moore-Penrose inverses in [Fiedler and Markham, A characterization of the Moore-Penrose inverse, Lin. Alg. Appl. 179 (1993), pp. 129-133] is extended to any reflexive g-inverse.
Classification : 15A03, 15A09
Keywords: generalized inverses, Moore-Penrose inverses, biorthogonal systems
@article{ELA_2003__10__a14,
     author = {Matsuura, Masaya},
     title = {A generalization of {Moore-Penrose} biorthogonal systems},
     journal = {The electronic journal of linear algebra},
     pages = {146--154},
     publisher = {mathdoc},
     volume = {10},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2003__10__a14/}
}
TY  - JOUR
AU  - Matsuura, Masaya
TI  - A generalization of Moore-Penrose biorthogonal systems
JO  - The electronic journal of linear algebra
PY  - 2003
SP  - 146
EP  - 154
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2003__10__a14/
LA  - en
ID  - ELA_2003__10__a14
ER  - 
%0 Journal Article
%A Matsuura, Masaya
%T A generalization of Moore-Penrose biorthogonal systems
%J The electronic journal of linear algebra
%D 2003
%P 146-154
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2003__10__a14/
%G en
%F ELA_2003__10__a14
Matsuura, Masaya. A generalization of Moore-Penrose biorthogonal systems. The electronic journal of linear algebra, Tome 10 (2003), pp. 146-154. http://geodesic.mathdoc.fr/item/ELA_2003__10__a14/