The maximal spectral radius of a digraph with $(m+1)^2 - s$ edges
The electronic journal of linear algebra, Tome 10 (2003), pp. 179-189.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is known that the spectral radius of a digraph with k edges is at most pk, and that this inequality is strict except when k is a perfect square. For k = m2 + `, ` fixed, m large, Friedland showed that the optimal digraph is obtained from the complete digraph on m vertices by adding one extra vertex, a corresponding loop, and then connecting it to the first b`/2c vertices by pairs of directed edges (for even ` an extra edge is added to the new vertex).
Classification : 05C50, 05C20, 05C38
Keywords: spectral radius, digraphs, (0, 1)-matrices, perron-Frobenius theorem, number of walks
@article{ELA_2003__10__a11,
     author = {Snellman, Jan},
     title = {The maximal spectral radius of a digraph with $(m+1)^2 - s$ edges},
     journal = {The electronic journal of linear algebra},
     pages = {179--189},
     publisher = {mathdoc},
     volume = {10},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2003__10__a11/}
}
TY  - JOUR
AU  - Snellman, Jan
TI  - The maximal spectral radius of a digraph with $(m+1)^2 - s$ edges
JO  - The electronic journal of linear algebra
PY  - 2003
SP  - 179
EP  - 189
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2003__10__a11/
LA  - en
ID  - ELA_2003__10__a11
ER  - 
%0 Journal Article
%A Snellman, Jan
%T The maximal spectral radius of a digraph with $(m+1)^2 - s$ edges
%J The electronic journal of linear algebra
%D 2003
%P 179-189
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2003__10__a11/
%G en
%F ELA_2003__10__a11
Snellman, Jan. The maximal spectral radius of a digraph with $(m+1)^2 - s$ edges. The electronic journal of linear algebra, Tome 10 (2003), pp. 179-189. http://geodesic.mathdoc.fr/item/ELA_2003__10__a11/