On a strong form of a conjecture of Boyle and Handelman.
The electronic journal of linear algebra, Tome 9 (2002), pp. 138-149.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\rho_{r, m}(x,\lambda):=(x - \lambda)^r\sum_{i=0}^m\binom{r+i-1}ix^{m-i}\lambda^i$. It is shown that if $\lambda_1,\dots, \lambda_n$ are complex numbers such that $\lambda_1=\lambda_2=\cdots=\lambda_r>0$ and $0\le\sum_{i=1}^n\lambda_i^k\le n\lambda_1^k$ for $1\le k\le m:=n-r$, then $$\prod_{i=1}^n(\lambda-\lambda_i)\le\rho_{r, m}(\lambda,\lambda_1), \quad{for all }\lambda\ge 6.75\lambda_1.\tag1$$ Moreover, if $r\ge m$, then (1) holds for all $\lambda\ge\lambda_1$, while if $r$, but $r$ is close to $m$, and $n$ is large, one can lower the constant of 6.75 in the inequality (1). The inequality (1) is inspired by, and related to, a conjecture of M. Boyle and D. E. Handelman [Ann. Math. (2) 133, No. 2, 249-316 (1991; Zbl 0735.15005)] on thenonzero spectrum of a nonnegative matrix.
Classification : 15A48, 15A18, 11C08
Keywords: nonnegative matrices, M-matrices, inverse eigenvalue problem
@article{ELA_2002__9__a9,
     author = {Goldberger, Assaf and Neumann, Michael},
     title = {On a strong form of a conjecture of {Boyle} and {Handelman.}},
     journal = {The electronic journal of linear algebra},
     pages = {138--149},
     publisher = {mathdoc},
     volume = {9},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2002__9__a9/}
}
TY  - JOUR
AU  - Goldberger, Assaf
AU  - Neumann, Michael
TI  - On a strong form of a conjecture of Boyle and Handelman.
JO  - The electronic journal of linear algebra
PY  - 2002
SP  - 138
EP  - 149
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2002__9__a9/
LA  - en
ID  - ELA_2002__9__a9
ER  - 
%0 Journal Article
%A Goldberger, Assaf
%A Neumann, Michael
%T On a strong form of a conjecture of Boyle and Handelman.
%J The electronic journal of linear algebra
%D 2002
%P 138-149
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2002__9__a9/
%G en
%F ELA_2002__9__a9
Goldberger, Assaf; Neumann, Michael. On a strong form of a conjecture of Boyle and Handelman.. The electronic journal of linear algebra, Tome 9 (2002), pp. 138-149. http://geodesic.mathdoc.fr/item/ELA_2002__9__a9/