Estimation of the maximum multiplicity of an eigenvalue in terms of the vertex degrees of the graph of a matrix
The electronic journal of linear algebra, Tome 9 (2002), pp. 27-31.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The maximum multiplicity among eigenvalues of matrices with a given graph cannot generally be expressed in terms of the degrees of the vertices (even when the graph is a tree). Given are best possible lower and upper bounds, and characterization of the cases of equality in these bounds. A by-product is a sequential algorithm to calculate the exact maximum multiplicity by simple counting.
Classification : 15A18, 15A57, 05C50, 05C05, 05C07
Keywords: eigenvalues, multiplicity, symmetric matrix, tree, vertex degrees
@article{ELA_2002__9__a21,
     author = {Johnson, Charles R. and Saiago, Carlos M.},
     title = {Estimation of the maximum multiplicity of an eigenvalue in terms of the vertex degrees of the graph of a matrix},
     journal = {The electronic journal of linear algebra},
     pages = {27--31},
     publisher = {mathdoc},
     volume = {9},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2002__9__a21/}
}
TY  - JOUR
AU  - Johnson, Charles R.
AU  - Saiago, Carlos M.
TI  - Estimation of the maximum multiplicity of an eigenvalue in terms of the vertex degrees of the graph of a matrix
JO  - The electronic journal of linear algebra
PY  - 2002
SP  - 27
EP  - 31
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2002__9__a21/
LA  - en
ID  - ELA_2002__9__a21
ER  - 
%0 Journal Article
%A Johnson, Charles R.
%A Saiago, Carlos M.
%T Estimation of the maximum multiplicity of an eigenvalue in terms of the vertex degrees of the graph of a matrix
%J The electronic journal of linear algebra
%D 2002
%P 27-31
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2002__9__a21/
%G en
%F ELA_2002__9__a21
Johnson, Charles R.; Saiago, Carlos M. Estimation of the maximum multiplicity of an eigenvalue in terms of the vertex degrees of the graph of a matrix. The electronic journal of linear algebra, Tome 9 (2002), pp. 27-31. http://geodesic.mathdoc.fr/item/ELA_2002__9__a21/