The symmetric linear matrix equation
The electronic journal of linear algebra, Tome 9 (2002), pp. 93-107.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper sufficient conditions are derived for the existence of unique and positive definite solutions of the matrix equations X -A*1XA1 -. . .-A*mXAm = Q and X +A*1XA1 +. . .+ A*mXAm = Q. In the case there is a unique solution which is positive definite an explicit expression for this solution is given.
Classification : 15A24
Keywords: linear matrix equation, positive definite solutions, uniqueness of solutions
@article{ELA_2002__9__a16,
     author = {Ran, Andr\'e C.M. and Reurings, Martine C.B.},
     title = {The symmetric linear matrix equation},
     journal = {The electronic journal of linear algebra},
     pages = {93--107},
     publisher = {mathdoc},
     volume = {9},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2002__9__a16/}
}
TY  - JOUR
AU  - Ran, André C.M.
AU  - Reurings, Martine C.B.
TI  - The symmetric linear matrix equation
JO  - The electronic journal of linear algebra
PY  - 2002
SP  - 93
EP  - 107
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2002__9__a16/
LA  - en
ID  - ELA_2002__9__a16
ER  - 
%0 Journal Article
%A Ran, André C.M.
%A Reurings, Martine C.B.
%T The symmetric linear matrix equation
%J The electronic journal of linear algebra
%D 2002
%P 93-107
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2002__9__a16/
%G en
%F ELA_2002__9__a16
Ran, André C.M.; Reurings, Martine C.B. The symmetric linear matrix equation. The electronic journal of linear algebra, Tome 9 (2002), pp. 93-107. http://geodesic.mathdoc.fr/item/ELA_2002__9__a16/