Isometric tight frames
The electronic journal of linear algebra, Tome 9 (2002), pp. 122-128.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A $d\times n$ matrix, $n\ge d$, whose columns have equal length and whose rows are orthonormal is constructed. This is equivalent to finding an isometric tight frame of $n$ vectors in $\bbfR^d$ (or $\bbfC^d$), or writing the $d\times d$ identity matrix $I= {d\over n} \sum^n_{i=1} P_i$, where the $P_i$ are rank 1 orthogonal projections. The simple inductive procedure given shows that there are many such isometric tight frames.
Classification : 42C15, 52B15, 42C40
Keywords: isometric tight frame, normalised tight frame, uniform tight frame
@article{ELA_2002__9__a12,
     author = {Reams, Robert and Waldron, Shayne},
     title = {Isometric tight frames},
     journal = {The electronic journal of linear algebra},
     pages = {122--128},
     publisher = {mathdoc},
     volume = {9},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2002__9__a12/}
}
TY  - JOUR
AU  - Reams, Robert
AU  - Waldron, Shayne
TI  - Isometric tight frames
JO  - The electronic journal of linear algebra
PY  - 2002
SP  - 122
EP  - 128
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2002__9__a12/
LA  - en
ID  - ELA_2002__9__a12
ER  - 
%0 Journal Article
%A Reams, Robert
%A Waldron, Shayne
%T Isometric tight frames
%J The electronic journal of linear algebra
%D 2002
%P 122-128
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2002__9__a12/
%G en
%F ELA_2002__9__a12
Reams, Robert; Waldron, Shayne. Isometric tight frames. The electronic journal of linear algebra, Tome 9 (2002), pp. 122-128. http://geodesic.mathdoc.fr/item/ELA_2002__9__a12/