Minimal distortion problems for classes of unitary matrices
The electronic journal of linear algebra, Tome 8 (2001), pp. 26-46.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given two chains of subspaces in Cn, the set of those unitary matrices is studied that map the subspaces in the first chain onto the corresponding subspaces in the second chain, and minimize the value kU - Ink for various unitarily invariant norms k * k on Cn*n. In particular, a formula for the minimum value kU - Ink is given, and the set of all the unitary matrices in the set attaining the minimum is described, for the Frobenius norm. For other unitarily invariant norms, the results are obtained if the subspaces have special structure. Several related matrix minimization problems are also considered.
Classification : 15A99
Keywords: unitary matrix, matrix optimization
@article{ELA_2001__8__a9,
     author = {Bolotnikov, Vladimir and Li, Chi-Kwong and Rodman, Leiba},
     title = {Minimal distortion problems for classes of unitary matrices},
     journal = {The electronic journal of linear algebra},
     pages = {26--46},
     publisher = {mathdoc},
     volume = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2001__8__a9/}
}
TY  - JOUR
AU  - Bolotnikov, Vladimir
AU  - Li, Chi-Kwong
AU  - Rodman, Leiba
TI  - Minimal distortion problems for classes of unitary matrices
JO  - The electronic journal of linear algebra
PY  - 2001
SP  - 26
EP  - 46
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2001__8__a9/
LA  - en
ID  - ELA_2001__8__a9
ER  - 
%0 Journal Article
%A Bolotnikov, Vladimir
%A Li, Chi-Kwong
%A Rodman, Leiba
%T Minimal distortion problems for classes of unitary matrices
%J The electronic journal of linear algebra
%D 2001
%P 26-46
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2001__8__a9/
%G en
%F ELA_2001__8__a9
Bolotnikov, Vladimir; Li, Chi-Kwong; Rodman, Leiba. Minimal distortion problems for classes of unitary matrices. The electronic journal of linear algebra, Tome 8 (2001), pp. 26-46. http://geodesic.mathdoc.fr/item/ELA_2001__8__a9/