On the group ${GL}(2,R[X])$
The electronic journal of linear algebra, Tome 7 (2000), pp. 59-72.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Suppose that G is an arbitrary group and S is its subset such that S $\Gamma 1$ = S. Let $gr(S)$ be the subgroup of G generated by S. Denote by l S (g) the length of element g $2 gr(S)$ relative to the set S. Let V be a finite subset of a free group F of countable rank and let the verbal subgroup V (F ) be a proper subgroup of F . For an arbitrary group G, denote by V (G) the set of values in the group G of all the words from the set V . The present paper establishes the infinity of the set fl S (g); g 2 V (G)g, where $G = GL(2; R[x])$, S = V (G) [ V (G) $\Gamma 1$ for an arbitrary field R.
Classification : 20E06, 20F22
Keywords: verbal subgroup, width of verbal subgroup, pseudocharacter
@article{ELA_2000__7__a8,
     author = {Fajziev, Valerij},
     title = {On the group ${GL}(2,R[X])$},
     journal = {The electronic journal of linear algebra},
     pages = {59--72},
     publisher = {mathdoc},
     volume = {7},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2000__7__a8/}
}
TY  - JOUR
AU  - Fajziev, Valerij
TI  - On the group ${GL}(2,R[X])$
JO  - The electronic journal of linear algebra
PY  - 2000
SP  - 59
EP  - 72
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2000__7__a8/
LA  - en
ID  - ELA_2000__7__a8
ER  - 
%0 Journal Article
%A Fajziev, Valerij
%T On the group ${GL}(2,R[X])$
%J The electronic journal of linear algebra
%D 2000
%P 59-72
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2000__7__a8/
%G en
%F ELA_2000__7__a8
Fajziev, Valerij. On the group ${GL}(2,R[X])$. The electronic journal of linear algebra, Tome 7 (2000), pp. 59-72. http://geodesic.mathdoc.fr/item/ELA_2000__7__a8/