On matrices with all minors negative
The electronic journal of linear algebra, Tome 7 (2000), pp. 92-99.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A matrix is called sign regular of order k if every minor of order i has the same sign for each i = 1; 2; : : : ; k. At one extreme of the sign regular matrices lies the well studied and important class of totally positive matrices. The purpose here is to initiate a study of the other extreme of sign regular matrices, namely the totally negative matrices (i.e., all minors negative). Many aspects of this class are considered including: existence, spectral properties, inverses, Schur complements, and factorizations.
Classification : 15A48
Keywords: minors, sign regular matrices, totally positive, totally negative
@article{ELA_2000__7__a6,
     author = {Fallat, Shaun M. and van den Driessche, P.},
     title = {On matrices with all minors negative},
     journal = {The electronic journal of linear algebra},
     pages = {92--99},
     publisher = {mathdoc},
     volume = {7},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2000__7__a6/}
}
TY  - JOUR
AU  - Fallat, Shaun M.
AU  - van den Driessche, P.
TI  - On matrices with all minors negative
JO  - The electronic journal of linear algebra
PY  - 2000
SP  - 92
EP  - 99
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2000__7__a6/
LA  - en
ID  - ELA_2000__7__a6
ER  - 
%0 Journal Article
%A Fallat, Shaun M.
%A van den Driessche, P.
%T On matrices with all minors negative
%J The electronic journal of linear algebra
%D 2000
%P 92-99
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2000__7__a6/
%G en
%F ELA_2000__7__a6
Fallat, Shaun M.; van den Driessche, P. On matrices with all minors negative. The electronic journal of linear algebra, Tome 7 (2000), pp. 92-99. http://geodesic.mathdoc.fr/item/ELA_2000__7__a6/