Digraphs with large exponent
The electronic journal of linear algebra, Tome 7 (2000), pp. 30-40.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Primitive digraphs on n vertices with exponents at least b! n =2c + 2, where ! n = (n $\Gamma 1$) 2 + 1, are considered. For n * 3, all such digraphs containing a Hamilton cycle are characterized; and for n * 6, all such digraphs containing a cycle of length n $\Gamma 1$ are characterized. Each eigenvalue of any stochastic matrix having a digraph in one of these two classes is proved to be geometrically simple.
Classification : 15A48, 05C20
Keywords: primitive directed graph, exponent
@article{ELA_2000__7__a11,
     author = {Kirkland, S. and Olesky, D.D. and van den Driessche, P.},
     title = {Digraphs with large exponent},
     journal = {The electronic journal of linear algebra},
     pages = {30--40},
     publisher = {mathdoc},
     volume = {7},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2000__7__a11/}
}
TY  - JOUR
AU  - Kirkland, S.
AU  - Olesky, D.D.
AU  - van den Driessche, P.
TI  - Digraphs with large exponent
JO  - The electronic journal of linear algebra
PY  - 2000
SP  - 30
EP  - 40
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2000__7__a11/
LA  - en
ID  - ELA_2000__7__a11
ER  - 
%0 Journal Article
%A Kirkland, S.
%A Olesky, D.D.
%A van den Driessche, P.
%T Digraphs with large exponent
%J The electronic journal of linear algebra
%D 2000
%P 30-40
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2000__7__a11/
%G en
%F ELA_2000__7__a11
Kirkland, S.; Olesky, D.D.; van den Driessche, P. Digraphs with large exponent. The electronic journal of linear algebra, Tome 7 (2000), pp. 30-40. http://geodesic.mathdoc.fr/item/ELA_2000__7__a11/