Almost disjoint families: An application to linear algebra
The electronic journal of linear algebra, Tome 7 (2000), pp. 41-52.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Suppose that ^ is an infinite cardinal, V is a ^-dimensional vector space over a field F , and A is a family of subspaces of V which is maximal with respect to the property: whenever U and W are distinct members of A, then U " W has dimension less than ^. What is the cardinality of A? This expository paper explains how questions about the possible cardinality of A for vector spaces of infinite dimension over countable fields are independent of the axioms of ordinary set theory (ZFC).
Classification : 03E35, 11E88, 15A63, 15A36, 03E50
Keywords: linear algebra, almost disjoint, martin's axiom, combinatorial set theory, logic AMS subject
@article{ELA_2000__7__a10,
     author = {Kolman, Oren},
     title = {Almost disjoint families: {An} application to linear algebra},
     journal = {The electronic journal of linear algebra},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {7},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2000__7__a10/}
}
TY  - JOUR
AU  - Kolman, Oren
TI  - Almost disjoint families: An application to linear algebra
JO  - The electronic journal of linear algebra
PY  - 2000
SP  - 41
EP  - 52
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2000__7__a10/
LA  - en
ID  - ELA_2000__7__a10
ER  - 
%0 Journal Article
%A Kolman, Oren
%T Almost disjoint families: An application to linear algebra
%J The electronic journal of linear algebra
%D 2000
%P 41-52
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2000__7__a10/
%G en
%F ELA_2000__7__a10
Kolman, Oren. Almost disjoint families: An application to linear algebra. The electronic journal of linear algebra, Tome 7 (2000), pp. 41-52. http://geodesic.mathdoc.fr/item/ELA_2000__7__a10/