Comparison theorems for weak nonnegative splittings of $K$-monotone matrices
The electronic journal of linear algebra, Tome 5 (1999), pp. 24-38.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The comparison of the asymptotic rates of convergence of two iteration matrices induced by two splittings of the same matrix has arisen in the works of many authors. In this paper new comparison theorems for weak nonnegative splittings of K-monotone matrices are derived which extend some results on regular splittings by Csordas and Varga (1984) for weak nonnegative splittings of the same or different types.
Classification : 65J10
Keywords: nonsingular matrix, iterative methods, spectral radius, proper cone, K-nonnegative matrix, K-monotone matrix, comparison conditions, weak nonnegative splitting
@article{ELA_1999__5__a4,
     author = {Climent, Joan-Josep and Perea, Carmen},
     title = {Comparison theorems for weak nonnegative splittings of $K$-monotone matrices},
     journal = {The electronic journal of linear algebra},
     pages = {24--38},
     publisher = {mathdoc},
     volume = {5},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_1999__5__a4/}
}
TY  - JOUR
AU  - Climent, Joan-Josep
AU  - Perea, Carmen
TI  - Comparison theorems for weak nonnegative splittings of $K$-monotone matrices
JO  - The electronic journal of linear algebra
PY  - 1999
SP  - 24
EP  - 38
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_1999__5__a4/
LA  - en
ID  - ELA_1999__5__a4
ER  - 
%0 Journal Article
%A Climent, Joan-Josep
%A Perea, Carmen
%T Comparison theorems for weak nonnegative splittings of $K$-monotone matrices
%J The electronic journal of linear algebra
%D 1999
%P 24-38
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_1999__5__a4/
%G en
%F ELA_1999__5__a4
Climent, Joan-Josep; Perea, Carmen. Comparison theorems for weak nonnegative splittings of $K$-monotone matrices. The electronic journal of linear algebra, Tome 5 (1999), pp. 24-38. http://geodesic.mathdoc.fr/item/ELA_1999__5__a4/