Tight bounds on the algebraic connectivity of a balanced binary tree
The electronic journal of linear algebra, Tome 6 (1999-2000), pp. 62-71.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, quite tight lower and upper bounds are obtained on the algebraic connectivity, namely, the second-smallest eigenvalue of the Laplacian matrix, of an unweighted balanced binary tree with k levels and hence n = 2 k $\Gamma 1$ vertices. This is accomplished by considering the inverse of a matrix of order k $\Gamma 1$ readily obtained from the Laplacian matrix. It is shown that the algebraic connectivity is 1=(2 k $\Gamma $2k + 3) + $O(1=2 2k )$.
Classification : 5C50, 15A48
Keywords: binary trees, Laplacian matrix, algebraic connectivity AMS subject
@article{ELA_1999-2000__6__a5,
     author = {Molitierno, Jason J. and Neumann, Michael and Shader, Bryan L.},
     title = {Tight bounds on the algebraic connectivity of a balanced binary tree},
     journal = {The electronic journal of linear algebra},
     pages = {62--71},
     publisher = {mathdoc},
     volume = {6},
     year = {1999-2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_1999-2000__6__a5/}
}
TY  - JOUR
AU  - Molitierno, Jason J.
AU  - Neumann, Michael
AU  - Shader, Bryan L.
TI  - Tight bounds on the algebraic connectivity of a balanced binary tree
JO  - The electronic journal of linear algebra
PY  - 1999-2000
SP  - 62
EP  - 71
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_1999-2000__6__a5/
LA  - en
ID  - ELA_1999-2000__6__a5
ER  - 
%0 Journal Article
%A Molitierno, Jason J.
%A Neumann, Michael
%A Shader, Bryan L.
%T Tight bounds on the algebraic connectivity of a balanced binary tree
%J The electronic journal of linear algebra
%D 1999-2000
%P 62-71
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_1999-2000__6__a5/
%G en
%F ELA_1999-2000__6__a5
Molitierno, Jason J.; Neumann, Michael; Shader, Bryan L. Tight bounds on the algebraic connectivity of a balanced binary tree. The electronic journal of linear algebra, Tome 6 (1999-2000), pp. 62-71. http://geodesic.mathdoc.fr/item/ELA_1999-2000__6__a5/