$Z$-pencils
The electronic journal of linear algebra, Tome 4 (1998), pp. 32-38.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The matrix pencil (A; B) = ftB $\Gamma A$ j t 2 C g is considered under the assumptions that A is entrywise nonnegative and B $\Gamma A$ is a nonsingular M-matrix. As t varies in [0; 1], the Z-matrices tB $\Gamma A$ are partitioned into the sets L s introduced by Fiedler and Markham. As no combinatorial structure of B is assumed here, this partition generalizes some of their work where B = I. Based on the union of the directed graphs of A and B, the combinatorial structure of nonnegative eigenvectors associated with the largest eigenvalue of (A; B) in [0; 1) is considered.
Classification : 15A22, 15A48, 05C50
Keywords: Z-matrix, matrix pencil, M-matrix, eigenspace, reduced graph
@article{ELA_1998__4__a2,
     author = {McDonald, Judith J. and Olesky, D.Dale and Schneider, Hans and Tsatsomeros, Michael J. and van den Driessche, P.},
     title = {$Z$-pencils},
     journal = {The electronic journal of linear algebra},
     pages = {32--38},
     publisher = {mathdoc},
     volume = {4},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_1998__4__a2/}
}
TY  - JOUR
AU  - McDonald, Judith J.
AU  - Olesky, D.Dale
AU  - Schneider, Hans
AU  - Tsatsomeros, Michael J.
AU  - van den Driessche, P.
TI  - $Z$-pencils
JO  - The electronic journal of linear algebra
PY  - 1998
SP  - 32
EP  - 38
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_1998__4__a2/
LA  - en
ID  - ELA_1998__4__a2
ER  - 
%0 Journal Article
%A McDonald, Judith J.
%A Olesky, D.Dale
%A Schneider, Hans
%A Tsatsomeros, Michael J.
%A van den Driessche, P.
%T $Z$-pencils
%J The electronic journal of linear algebra
%D 1998
%P 32-38
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_1998__4__a2/
%G en
%F ELA_1998__4__a2
McDonald, Judith J.; Olesky, D.Dale; Schneider, Hans; Tsatsomeros, Michael J.; van den Driessche, P. $Z$-pencils. The electronic journal of linear algebra, Tome 4 (1998), pp. 32-38. http://geodesic.mathdoc.fr/item/ELA_1998__4__a2/