D-optimal weighing designs for four and five objects
The electronic journal of linear algebra, Tome 4 (1998), pp. 48-73.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For j = 4 and j = 5 and all d * j, the maximum value of det XX T , where X runs through all j $\Theta d$ (0,1)-matrices, is determined along with a matrix X 0 for which the maximum determinant is attained. In the theory of statistical designs, X 0 is called a D-optimal design matrix.
Classification : 62K05, 05B05
Keywords: D-optimal design, weighing design AMS subject
@article{ELA_1998__4__a0,
     author = {Neubauer, Michael G. and Watkins, William and Zeitlin, Joel},
     title = {D-optimal weighing designs for four and five objects},
     journal = {The electronic journal of linear algebra},
     pages = {48--73},
     publisher = {mathdoc},
     volume = {4},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_1998__4__a0/}
}
TY  - JOUR
AU  - Neubauer, Michael G.
AU  - Watkins, William
AU  - Zeitlin, Joel
TI  - D-optimal weighing designs for four and five objects
JO  - The electronic journal of linear algebra
PY  - 1998
SP  - 48
EP  - 73
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_1998__4__a0/
LA  - en
ID  - ELA_1998__4__a0
ER  - 
%0 Journal Article
%A Neubauer, Michael G.
%A Watkins, William
%A Zeitlin, Joel
%T D-optimal weighing designs for four and five objects
%J The electronic journal of linear algebra
%D 1998
%P 48-73
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_1998__4__a0/
%G en
%F ELA_1998__4__a0
Neubauer, Michael G.; Watkins, William; Zeitlin, Joel. D-optimal weighing designs for four and five objects. The electronic journal of linear algebra, Tome 4 (1998), pp. 48-73. http://geodesic.mathdoc.fr/item/ELA_1998__4__a0/