On nonnegative operators and fully cyclic peripheral spectrum
The electronic journal of linear algebra, Tome 3 (1998), pp. 13-22.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The properties of the peripheral spectrum of a nonnegative linear operator $A$ (for which the spectral radius is a pole of its resolvent) in a complex Banach lattice are studied. It is shown, e.g., that the peripheral spectrum of a natural quotient operator is always fully cyclic. We describe when the nonnegative eigenvectors corresponding to the spectral radius $r$ span the kernel $N(r- A)$. Finally, we apply our results to the case of a nonnegative matrix, and show that they sharpen earlier results by B.-S. Tam [Tamkang J. Math. 21, No. 1, 65-70 (1990; Zbl 0711.15017)] on such matrices and full cyclicity of the peripheral spectrum.
Classification : 47B65, 47A10, 15A48
@article{ELA_1998__3__a9,
     author = {F\"orster, K.-H. and Nagy, B.},
     title = {On nonnegative operators and fully cyclic peripheral spectrum},
     journal = {The electronic journal of linear algebra},
     pages = {13--22},
     publisher = {mathdoc},
     volume = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_1998__3__a9/}
}
TY  - JOUR
AU  - Förster, K.-H.
AU  - Nagy, B.
TI  - On nonnegative operators and fully cyclic peripheral spectrum
JO  - The electronic journal of linear algebra
PY  - 1998
SP  - 13
EP  - 22
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_1998__3__a9/
LA  - en
ID  - ELA_1998__3__a9
ER  - 
%0 Journal Article
%A Förster, K.-H.
%A Nagy, B.
%T On nonnegative operators and fully cyclic peripheral spectrum
%J The electronic journal of linear algebra
%D 1998
%P 13-22
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_1998__3__a9/
%G en
%F ELA_1998__3__a9
Förster, K.-H.; Nagy, B. On nonnegative operators and fully cyclic peripheral spectrum. The electronic journal of linear algebra, Tome 3 (1998), pp. 13-22. http://geodesic.mathdoc.fr/item/ELA_1998__3__a9/