The combinatorially symmetric $P$-matrix completion problem
The electronic journal of linear algebra, Tome 1 (1996), pp. 59-63.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: An n-by-n real matrix is called a P -matrix if all its principal minors are positive. The P -matrix completion problem asks which partial P -matrices have a completion to a P -matrix. Here, we prove that every partial P -matrix with combinatorially symmetric specified entries has a P -matrix completion. The general case, in which the combinatorial symmetry assumption is relaxed, is also discussed.
Classification : 15A48
Keywords: P -matrix, completion problem, combinatorial symmetry $AMS(MOS)$ subject
@article{ELA_1996__1__a1,
     author = {Johnson, Charles R. and Kroschel, Brenda K.},
     title = {The combinatorially symmetric $P$-matrix completion problem},
     journal = {The electronic journal of linear algebra},
     pages = {59--63},
     publisher = {mathdoc},
     volume = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_1996__1__a1/}
}
TY  - JOUR
AU  - Johnson, Charles R.
AU  - Kroschel, Brenda K.
TI  - The combinatorially symmetric $P$-matrix completion problem
JO  - The electronic journal of linear algebra
PY  - 1996
SP  - 59
EP  - 63
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_1996__1__a1/
LA  - en
ID  - ELA_1996__1__a1
ER  - 
%0 Journal Article
%A Johnson, Charles R.
%A Kroschel, Brenda K.
%T The combinatorially symmetric $P$-matrix completion problem
%J The electronic journal of linear algebra
%D 1996
%P 59-63
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_1996__1__a1/
%G en
%F ELA_1996__1__a1
Johnson, Charles R.; Kroschel, Brenda K. The combinatorially symmetric $P$-matrix completion problem. The electronic journal of linear algebra, Tome 1 (1996), pp. 59-63. http://geodesic.mathdoc.fr/item/ELA_1996__1__a1/