Local and global low-regularity solutions to generalized Leray-alpha equations
Electronic Journal of Differential Equations, Tome 2015 (2015).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It has recently become common to study approximating equations for the Navier-Stokes equation. One of these is the Leray-alpha equation, which regularizes the Navier-Stokes equation by replacing (in most locations) the solution u with $(1-\alpha^2\Delta)u$. Another is the generalized Navier-Stokes equation, which replaces the Laplacian with a Fourier multiplier with symbol of the form $-|\xi|^\gamma ( \gamma=2$ is the standard Navier-Stokes equation), and recently in [16] Tao also considered multipliers of the form $-|\xi|^\gamma/g(|\xi|)$, where g is (essentially) a logarithm. The generalized Leray-alpha equation combines these two modifications by incorporating the regularizing term and replacing the Laplacians with more general Fourier multipliers, including allowing for g terms similar to those used in [16]. Our goal in this paper is to obtain existence and uniqueness results with low regularity and/or non-L^2 initial data. We will also use energy estimates to extend some of these local existence results to global existence results.
Classification : 76D05, 35A02, 35K58
Keywords: Leray-alpha model, Besov space, fractional Laplacian
@article{EJDE_2015__2015__a78,
     author = {Pennington, Nathan},
     title = {Local and global low-regularity solutions to generalized {Leray-alpha} equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2015},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a78/}
}
TY  - JOUR
AU  - Pennington, Nathan
TI  - Local and global low-regularity solutions to generalized Leray-alpha equations
JO  - Electronic Journal of Differential Equations
PY  - 2015
VL  - 2015
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a78/
LA  - en
ID  - EJDE_2015__2015__a78
ER  - 
%0 Journal Article
%A Pennington, Nathan
%T Local and global low-regularity solutions to generalized Leray-alpha equations
%J Electronic Journal of Differential Equations
%D 2015
%V 2015
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a78/
%G en
%F EJDE_2015__2015__a78
Pennington, Nathan. Local and global low-regularity solutions to generalized Leray-alpha equations. Electronic Journal of Differential Equations, Tome 2015 (2015). http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a78/