Stability of solitary waves for a three-wave interaction model
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article we consider the normalized one-dimensional three-wave interaction model $$\displaylines{ i\frac{\partial z_1}{\partial t}=- \frac{d^2z_1}{dx^2}- z_3{\bar z}_2\cr i\frac{\partial z_2}{\partial t}=- \frac{d^2z_2}{dx^2}- z_3{\bar z}_1\cr i\frac{\partial z_3}{\partial t}=- \frac{d^2z_3}{dx^2}- z_1z_2. }$$ Solitary waves for this model are solutions of the form $$ z_1(t,x)=e^{i\omega_1 t} u_1(x)\quad z_2(t,x)=e^{i\omega_2 t} u_2(x)\quad z_3(t,x) =e^{i(\omega_1+\omega_2) t} u_3(x), $$ where $$\displaylines{ - \frac{d^2u_1}{dx^2} - u_2u_3+\omega_1u_1=0 \cr - \frac{d^2u_2}{dx^2} - u_1u_3+\omega_2u_2=0 \cr - \frac{d^2u_3}{dx^2} - u_1u_2+(\omega_1+\omega_2)u_3=0. }$$ For the case $\omega_1=\omega_2=\omega$, we prove existence, uniqueness and stability of solitary waves corresponding to positive solutions $u_i(x)$ that tend to zero as x tends to infinity. The full model has more parameters, and the case we consider corresponds to the exact phase matching. However, as we will see, even in the simpler case, a formal proof of stability depends on a nontrivial spectral analysis of the linearized operator. This is so because the spectral analysis depends on some calculations on a full neighborhood of the parameter $(\omega,\omega)$ and the solution is not known explicitly.
Classification : 34A34
Keywords: dispersive equations, variational methods, stability
@article{EJDE_2014__2014__a97,
     author = {Lopes, Orlando},
     title = {Stability of solitary waves for a three-wave interaction model},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a97/}
}
TY  - JOUR
AU  - Lopes, Orlando
TI  - Stability of solitary waves for a three-wave interaction model
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a97/
LA  - en
ID  - EJDE_2014__2014__a97
ER  - 
%0 Journal Article
%A Lopes, Orlando
%T Stability of solitary waves for a three-wave interaction model
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a97/
%G en
%F EJDE_2014__2014__a97
Lopes, Orlando. Stability of solitary waves for a three-wave interaction model. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a97/