Existence and multiplicity of homoclinic solutions for $p(t)$-Laplacian systems with subquadratic potentials
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: By using the genus properties, we establish some criteria for the second-order $p(t)$-Laplacian system $$ \frac{d}{dt}\big(|\dot{u}(t)|^{p(t)-2}\dot{u}(t)\big)-a(t)|u(t)|^{p(t)-2}u(t) +\nabla W(t, u(t))=0 $$ to have at least one, and infinitely many homoclinic orbits. where $t\in {\mathbb{R}},\; u\in {\mathbb{R}}^{N}, p(t)\in C(\mathbb{R},\mathbb{R})$ and $p(t)>1, a\in C({\mathbb{R}}, {\mathbb{R}})$ and $W\in C^{1}({\mathbb{R}}\times {\mathbb{R}}^{N}, {\mathbb{R}})$ may not be periodic in t.
Classification : 34C37, 58E05, 70H05
Keywords: homoclinic solutions, $p(t)$-Laplacian systems, genus
@article{EJDE_2014__2014__a63,
     author = {Qin, Bin and Chen, Peng},
     title = {Existence and multiplicity of homoclinic solutions for $p(t)${-Laplacian} systems with subquadratic potentials},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a63/}
}
TY  - JOUR
AU  - Qin, Bin
AU  - Chen, Peng
TI  - Existence and multiplicity of homoclinic solutions for $p(t)$-Laplacian systems with subquadratic potentials
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a63/
LA  - en
ID  - EJDE_2014__2014__a63
ER  - 
%0 Journal Article
%A Qin, Bin
%A Chen, Peng
%T Existence and multiplicity of homoclinic solutions for $p(t)$-Laplacian systems with subquadratic potentials
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a63/
%G en
%F EJDE_2014__2014__a63
Qin, Bin; Chen, Peng. Existence and multiplicity of homoclinic solutions for $p(t)$-Laplacian systems with subquadratic potentials. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a63/