Boundary differentiability for inhomogeneous infinity Laplace equations
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the boundary regularity of the solutions to inhomogeneous infinity Laplace equations. We prove that if $u\in C(\bar{\Omega})$ is a viscosity solution to $\Delta_{\infty}u:=\sum_{i,j=1}^n u_{x_i}u_{x_j}u_{x_ix_j}=f$ with $f\in C(\Omega)\cap L^{\infty}(\Omega)$ and for $x_0\in \partial\Omega$ both $\partial\Omega$ and $g:=u|_{\partial\Omega}$ are differentiable at $x_0$, then u is differentiable at $x_0$.
Classification : 35J25, 35J70, 49N60
Keywords: boundary regularity, infinity Laplacian, comparison principle, monotonicity
@article{EJDE_2014__2014__a183,
     author = {Hong, Guanghao},
     title = {Boundary differentiability for inhomogeneous infinity {Laplace} equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a183/}
}
TY  - JOUR
AU  - Hong, Guanghao
TI  - Boundary differentiability for inhomogeneous infinity Laplace equations
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a183/
LA  - en
ID  - EJDE_2014__2014__a183
ER  - 
%0 Journal Article
%A Hong, Guanghao
%T Boundary differentiability for inhomogeneous infinity Laplace equations
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a183/
%G en
%F EJDE_2014__2014__a183
Hong, Guanghao. Boundary differentiability for inhomogeneous infinity Laplace equations. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a183/