Bifurcation of traveling wave solutions of a generalized $K(n,n)$ equation
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, a generalized $K(n,n)$ equation is studied by the qualitative theory of bifurcations and the method of dynamical systems. The result shows the existence of the different kinds of traveling solutions of the generalized $K(n,n)$ equation, including solitary waves, kink waves, periodic wave and compacton solutions, which depend on different parametric ranges. Moreover, various sufficient conditions to guarantee the existence of the above traveling solutions are provided under different parameters conditions.
Classification : 34C25-28, 35B08, 35B10, 35B40
Keywords: solitary wave, periodic wave, kink wave, compatons, bifurcation
@article{EJDE_2014__2014__a150,
     author = {Zhao, Xiaoshan and Zhao, Guanhua and Peng, Linping},
     title = {Bifurcation of traveling wave solutions of a generalized $K(n,n)$ equation},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a150/}
}
TY  - JOUR
AU  - Zhao, Xiaoshan
AU  - Zhao, Guanhua
AU  - Peng, Linping
TI  - Bifurcation of traveling wave solutions of a generalized $K(n,n)$ equation
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a150/
LA  - en
ID  - EJDE_2014__2014__a150
ER  - 
%0 Journal Article
%A Zhao, Xiaoshan
%A Zhao, Guanhua
%A Peng, Linping
%T Bifurcation of traveling wave solutions of a generalized $K(n,n)$ equation
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a150/
%G en
%F EJDE_2014__2014__a150
Zhao, Xiaoshan; Zhao, Guanhua; Peng, Linping. Bifurcation of traveling wave solutions of a generalized $K(n,n)$ equation. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a150/