Continuous dependence of solutions for indefinite semilinear elliptic problems
Electronic Journal of Differential Equations, Tome 2013 (2013).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the superlinear elliptic problem $$ -\Delta u + m(x)u = a(x)u^p $$ in a bounded smooth domain under Neumann boundary conditions, where $m \in L^{\sigma}(\Omega), \sigma\geq N/2$ and $a\in C(\overline{\Omega})$ is a sign changing function. Assuming that the associated first eigenvalue of the operator $-\Delta + m $ is zero, we use constrained minimization methods to study the existence of a positive solution when $\widehat{m}$ is a suitable perturbation of m.
Classification : 35J20, 35J60, 35Q55
Keywords: positive solution, constrained minimization, eigenvalue problem, Neumann boundary condition, unique continuation
@article{EJDE_2013__2013__a61,
     author = {Silva, Elves A.B. and Silva, Maxwell L.},
     title = {Continuous dependence of solutions for indefinite semilinear elliptic problems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2013},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a61/}
}
TY  - JOUR
AU  - Silva, Elves A.B.
AU  - Silva, Maxwell L.
TI  - Continuous dependence of solutions for indefinite semilinear elliptic problems
JO  - Electronic Journal of Differential Equations
PY  - 2013
VL  - 2013
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a61/
LA  - en
ID  - EJDE_2013__2013__a61
ER  - 
%0 Journal Article
%A Silva, Elves A.B.
%A Silva, Maxwell L.
%T Continuous dependence of solutions for indefinite semilinear elliptic problems
%J Electronic Journal of Differential Equations
%D 2013
%V 2013
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a61/
%G en
%F EJDE_2013__2013__a61
Silva, Elves A.B.; Silva, Maxwell L. Continuous dependence of solutions for indefinite semilinear elliptic problems. Electronic Journal of Differential Equations, Tome 2013 (2013). http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a61/