Schrödinger systems with a convection term for the $(p_1,\dots,p_d)$-Laplacian in $\Bbb R^N$
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The main goal is to study nonlinear Schrodinger type problems for the $(p_1,\dots ,p_d)$-Laplacian with nonlinearities satisfying Keller- Osserman conditions. We establish the existence of infinitely many positive entire radial solutions by an application of a fixed point theorem and the Arzela-Ascoli theorem. An important aspect in this article is that the solutions are obtained by successive approximations and hence the proof can be implemented in a computer program.
Classification : 35J62, 35J66, 35J92, 58J10, 58J20
Keywords: entire solutions, large solutions, quasilinear systems, radial solutions
@article{EJDE_2012__2012__a79,
     author = {Covei, Dragos-Patru},
     title = {Schr\"odinger systems with a convection term for the $(p_1,\dots,p_d)${-Laplacian} in $\Bbb R^N$},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a79/}
}
TY  - JOUR
AU  - Covei, Dragos-Patru
TI  - Schrödinger systems with a convection term for the $(p_1,\dots,p_d)$-Laplacian in $\Bbb R^N$
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a79/
LA  - en
ID  - EJDE_2012__2012__a79
ER  - 
%0 Journal Article
%A Covei, Dragos-Patru
%T Schrödinger systems with a convection term for the $(p_1,\dots,p_d)$-Laplacian in $\Bbb R^N$
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a79/
%G en
%F EJDE_2012__2012__a79
Covei, Dragos-Patru. Schrödinger systems with a convection term for the $(p_1,\dots,p_d)$-Laplacian in $\Bbb R^N$. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a79/