Existence of a minimizer for the quasi-relativistic Kohn-Sham model
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the standard and extended Kohn-Sham models for quasi-relativistic N-electron Coulomb systems; that is, systems where the kinetic energy of the electrons is given by the quasi-relativistic operator $$ \sqrt{-\alpha^{-2}\Delta_{x_n}+\alpha^{-4}}-\alpha^{-2}. $$ For spin-unpolarized systems in the local density approximation, we prove existence of a ground state (or minimizer) provided that the total charge $Z_{\hbox{tot}}$ of K nuclei is greater than N-1 and that $Z_{\hbox{tot}}$ is smaller than a critical charge $Z_{\hbox{c}}=2 \alpha^{-1} \pi^{-1}$.
Classification : 35J60, 47J10, 58Z05, 81V55
Keywords: Kohn-Sham equations, ground state, variational methods, concentration-compactness, density operators
@article{EJDE_2012__2012__a15,
     author = {Argaez, Carlos and Melgaard, Michael},
     title = {Existence of a minimizer for the quasi-relativistic {Kohn-Sham} model},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a15/}
}
TY  - JOUR
AU  - Argaez, Carlos
AU  - Melgaard, Michael
TI  - Existence of a minimizer for the quasi-relativistic Kohn-Sham model
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a15/
LA  - en
ID  - EJDE_2012__2012__a15
ER  - 
%0 Journal Article
%A Argaez, Carlos
%A Melgaard, Michael
%T Existence of a minimizer for the quasi-relativistic Kohn-Sham model
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a15/
%G en
%F EJDE_2012__2012__a15
Argaez, Carlos; Melgaard, Michael. Existence of a minimizer for the quasi-relativistic Kohn-Sham model. Electronic Journal of Differential Equations, Tome 2012 (2012). http://geodesic.mathdoc.fr/item/EJDE_2012__2012__a15/