Green function and Fourier transform for o-plus operators
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we study the o-plus operator defined by $$ \oplus^k =\Big(\Big(\sum^{p}_{i=1}\frac{\partial^2}{\partial x^2_i}\Big)^{4}-\Big(\sum^{p+q}_{j=p+1}\frac{\partial^2}{\partial x^2_j}\Big)^{4}\Big)^k , $$ where $x=(x_1,x_2,\dots,x_n)\in \mathbb{R}^n, p+q=n$, and $k$ is a nonnegative integer. Firstly, we studied the elementary solution for the $\oplus^k $ operator and then this solution is related to the solution of the wave and the Laplacian equations. Finally, we studied the Fourier transform of the elementary solution and also the Fourier transform of its convolution.
Classification : 46F10, 46F12
Keywords: Fourier transform, diamond operator, tempered distribution
@article{EJDE_2010__2010__a7,
     author = {Satsanit, Wanchak},
     title = {Green function and {Fourier} transform for o-plus operators},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a7/}
}
TY  - JOUR
AU  - Satsanit, Wanchak
TI  - Green function and Fourier transform for o-plus operators
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a7/
LA  - en
ID  - EJDE_2010__2010__a7
ER  - 
%0 Journal Article
%A Satsanit, Wanchak
%T Green function and Fourier transform for o-plus operators
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a7/
%G en
%F EJDE_2010__2010__a7
Satsanit, Wanchak. Green function and Fourier transform for o-plus operators. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a7/