Constant invariant solutions of the Poincaré center-focus problem
Electronic Journal of Differential Equations, Tome 2010 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the classical Poincaré problem dx dy = - y - $p(x, y), = x + q(x, y)$ dt dt where p, q are homogeneous polynomials of degree n $\geq 2$. Associated with this system is an Abel differential equation d$\rho = \psi 3\rho 3 + \psi 2\rho 2$ d$\theta $in which the coefficients are trigonometric polynomials. We investigate two separate conditions which produce a constant first absolute invariant of this equation. One of these conditions leads to a new class of integrable, center conditions for the Poincaré problem if n $\geq 9$ is an odd integer. We also show that both classes of solutions produce polynomial solutions to the problem.
Classification : 34A05, 34C25
Keywords: center-focus problem, Abel differential equation, constant invariant, symmetric centers
@article{EJDE_2010__2010__a184,
     author = {Nicklason, Gary R.},
     title = {Constant invariant solutions of the {Poincar\'e} center-focus problem},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2010},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a184/}
}
TY  - JOUR
AU  - Nicklason, Gary R.
TI  - Constant invariant solutions of the Poincaré center-focus problem
JO  - Electronic Journal of Differential Equations
PY  - 2010
VL  - 2010
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a184/
LA  - en
ID  - EJDE_2010__2010__a184
ER  - 
%0 Journal Article
%A Nicklason, Gary R.
%T Constant invariant solutions of the Poincaré center-focus problem
%J Electronic Journal of Differential Equations
%D 2010
%V 2010
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a184/
%G en
%F EJDE_2010__2010__a184
Nicklason, Gary R. Constant invariant solutions of the Poincaré center-focus problem. Electronic Journal of Differential Equations, Tome 2010 (2010). http://geodesic.mathdoc.fr/item/EJDE_2010__2010__a184/