Precise asymptotic behavior of solutions to damped simple pendulum equations
Electronic Journal of Differential Equations, Tome 2009 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the simple pendulum equation $$\displaylines{ -u''(t) + \epsilon f(u'(t)) = \lambda\sin u(t), \quad t \in I:=(-1, 1),\cr u(t) > 0, \quad t \in I, \quad u(\pm 1) = 0, }$$ where $0 \epsilon \le 1, \lambda > 0$, and the friction term is either $f(y) = \pm|y|$ or $f(y) = -y$. Note that when $f(y) = -y$ and $\epsilon = 1$, we have well known original damped simple pendulum equation. To understand the dependance of solutions, to the damped simple pendulum equation with $\lambda \gg 1$, upon the term $f(u'(t))$, we present asymptotic formulas for the maximum norm of the solutions. Also we present an asymptotic formula for the time at which maximum occurs, for the case $f(u) = -u$.
Classification : 34B15
Keywords: damped simple pendulum, asymptotic formula
@article{EJDE_2009__2009__a122,
     author = {Shibata, Tetsutaro},
     title = {Precise asymptotic behavior of solutions to damped simple pendulum equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2009},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a122/}
}
TY  - JOUR
AU  - Shibata, Tetsutaro
TI  - Precise asymptotic behavior of solutions to damped simple pendulum equations
JO  - Electronic Journal of Differential Equations
PY  - 2009
VL  - 2009
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a122/
LA  - en
ID  - EJDE_2009__2009__a122
ER  - 
%0 Journal Article
%A Shibata, Tetsutaro
%T Precise asymptotic behavior of solutions to damped simple pendulum equations
%J Electronic Journal of Differential Equations
%D 2009
%V 2009
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a122/
%G en
%F EJDE_2009__2009__a122
Shibata, Tetsutaro. Precise asymptotic behavior of solutions to damped simple pendulum equations. Electronic Journal of Differential Equations, Tome 2009 (2009). http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a122/