A note on extremal functions for sharp Sobolev inequalities
Electronic Journal of Differential Equations, Tome 2007 (2007).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this note we prove that any compact Riemannian manifold of dimension $n\geq 4$ which is non-conformal to the standard n-sphere and has positive Yamabe invariant admits infinitely many conformal metrics with nonconstant positive scalar curvature on which the classical sharp Sobolev inequalities admit extremal functions. In particular we show the existence of compact Riemannian manifolds with nonconstant positive scalar curvature for which extremal functions exist. Our proof is simple and bases on results of the best constants theory and Yamabe problem.
Classification : 32Q10, 53C21
Keywords: extremal functions, optimal Sobolev inequalities, conformal deformations
@article{EJDE_2007__2007__a14,
     author = {Barbosa, Ezequiel R. and Montenegro, Marcos},
     title = {A note on extremal functions for sharp {Sobolev} inequalities},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2007},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a14/}
}
TY  - JOUR
AU  - Barbosa, Ezequiel R.
AU  - Montenegro, Marcos
TI  - A note on extremal functions for sharp Sobolev inequalities
JO  - Electronic Journal of Differential Equations
PY  - 2007
VL  - 2007
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a14/
LA  - en
ID  - EJDE_2007__2007__a14
ER  - 
%0 Journal Article
%A Barbosa, Ezequiel R.
%A Montenegro, Marcos
%T A note on extremal functions for sharp Sobolev inequalities
%J Electronic Journal of Differential Equations
%D 2007
%V 2007
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a14/
%G en
%F EJDE_2007__2007__a14
Barbosa, Ezequiel R.; Montenegro, Marcos. A note on extremal functions for sharp Sobolev inequalities. Electronic Journal of Differential Equations, Tome 2007 (2007). http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a14/