Reduction of infinite dimensional equations
Electronic Journal of Differential Equations, Tome 2006 (2006).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we use the general Legendre transformation to show the infinite dimensional integrable equations can be reduced to a finite dimensional integrable Hamiltonian system on an invariant set under the flow of the integrable equations. Then we obtain the periodic or quasi-periodic solution of the equation. This generalizes the results of Lax and Novikov regarding the periodic or quasi-periodic solution of the KdV equation to the general case of isospectral Hamiltonian integrable equation. And finally, we discuss the AKNS hierarchy as a special example.
Classification : 37K15, 37K40
Keywords: soliton equations, Hamiltonian equation, Euler-Lagrange equation, integrable systems, Legendre transformation, involutive system, symmetries of equations, invariant manifold, Poisson bracket, symplectic space
@article{EJDE_2006__2006__a177,
     author = {Li, Zhongding and Xu, Taixi},
     title = {Reduction of infinite dimensional equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2006},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a177/}
}
TY  - JOUR
AU  - Li, Zhongding
AU  - Xu, Taixi
TI  - Reduction of infinite dimensional equations
JO  - Electronic Journal of Differential Equations
PY  - 2006
VL  - 2006
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a177/
LA  - en
ID  - EJDE_2006__2006__a177
ER  - 
%0 Journal Article
%A Li, Zhongding
%A Xu, Taixi
%T Reduction of infinite dimensional equations
%J Electronic Journal of Differential Equations
%D 2006
%V 2006
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a177/
%G en
%F EJDE_2006__2006__a177
Li, Zhongding; Xu, Taixi. Reduction of infinite dimensional equations. Electronic Journal of Differential Equations, Tome 2006 (2006). http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a177/