Different types of solvability conditions for differential operators
Electronic Journal of Differential Equations, Tome 2006 (2006).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Solvability conditions for linear differential equations are usually formulated in terms of orthogonality of the right-hand side to solutions of the homogeneous adjoint equation. However, if the corresponding operator does not satisfy the Fredholm property such solvability conditions may be not applicable. For this case, we obtain another type of solvability conditions, for ordinary differential equations on the real axis, and for elliptic problems in unbounded cylinders.
Classification : 34A30, 35J25, 47A53
Keywords: linear differential equations, solvability conditions, non-Fredholm operators
@article{EJDE_2006__2006__a16,
     author = {Kryzhevich, Sergey G. and Volpert, Vitaly A.},
     title = {Different types of solvability conditions for differential operators},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2006},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a16/}
}
TY  - JOUR
AU  - Kryzhevich, Sergey G.
AU  - Volpert, Vitaly A.
TI  - Different types of solvability conditions for differential operators
JO  - Electronic Journal of Differential Equations
PY  - 2006
VL  - 2006
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a16/
LA  - en
ID  - EJDE_2006__2006__a16
ER  - 
%0 Journal Article
%A Kryzhevich, Sergey G.
%A Volpert, Vitaly A.
%T Different types of solvability conditions for differential operators
%J Electronic Journal of Differential Equations
%D 2006
%V 2006
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a16/
%G en
%F EJDE_2006__2006__a16
Kryzhevich, Sergey G.; Volpert, Vitaly A. Different types of solvability conditions for differential operators. Electronic Journal of Differential Equations, Tome 2006 (2006). http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a16/