Multiplicity of symmetric solutions for a nonlinear eigenvalue problem in $\Bbb R^n$
Electronic Journal of Differential Equations, Tome 2005 (2005).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we study the nonlinear eigenvalue field equation $$ -\Delta u+V(|x|)u+\varepsilon(-\Delta_p u+W'(u))=\mu u $$ where $u$ is a function from $\mathbb{R}^n$ to $\mathbb{R}^{n+1}$ with $n\geq 3, \varepsilon$ is a positive parameter and $O(n)$: For any $q\in\mathbb{Z}$ we prove the existence of finitely many pairs $(u,\mu)$ solutions for $\varepsilon$ sufficiently small, where $u$ is symmetric and has topological charge $q$. The multiplicity of our solutions can be as large as desired, provided that the singular point of $W$ and $\varepsilon$ are chosen accordingly.
Classification : 35Q55, 45C05
Keywords: nonlinear Schrödinger equations, nonlinear eigenvalue problems
@article{EJDE_2005__2005__a186,
     author = {Visetti, Daniela},
     title = {Multiplicity of symmetric solutions for a nonlinear eigenvalue problem in $\Bbb R^n$},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2005},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a186/}
}
TY  - JOUR
AU  - Visetti, Daniela
TI  - Multiplicity of symmetric solutions for a nonlinear eigenvalue problem in $\Bbb R^n$
JO  - Electronic Journal of Differential Equations
PY  - 2005
VL  - 2005
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a186/
LA  - en
ID  - EJDE_2005__2005__a186
ER  - 
%0 Journal Article
%A Visetti, Daniela
%T Multiplicity of symmetric solutions for a nonlinear eigenvalue problem in $\Bbb R^n$
%J Electronic Journal of Differential Equations
%D 2005
%V 2005
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a186/
%G en
%F EJDE_2005__2005__a186
Visetti, Daniela. Multiplicity of symmetric solutions for a nonlinear eigenvalue problem in $\Bbb R^n$. Electronic Journal of Differential Equations, Tome 2005 (2005). http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a186/